

1989

BARC CHAMPIONSHIP RACE DAY SUNDAY, 6th AUGUST

OFFICIAL PROGRAMME £1.20

ORGANISED BY BRITISH AUTOMOBILE RACING CLUB

PEMBREY SUNDAY, 6th AUGUST 1989

The promoters reserve the right to amend or cancel the programme or any part of it without prior notice or refund.

09.15-09.35 09.40-10.00 10.10-10.30 10.40-11.00	Formula 750 Monoposto Kent Formula 1300 Group K (B/C)	11.10-11.30 11.40-12.00 12.10-12.30 12.40-13.00	Monoposto Clubmans Register Road Sports Group K (A/D/E/F)
13.00-14.00			
EVENT 1	PSL DELLORTO 750 CHAL	LENGE RACE 10) Laps
Awards	Trophies to 1st, 2nd and 3rd.		
EVENT 2	DELTA FREIGHT MONPOST	FO KENT CHAMP	PIONSHIP RACE 10 Laps
Awards:	1st £40, 2nd £30, 3rd £20, 4th	n £10.	
EVENT 3	TRY HOMES FORMULA 13	00 CHALLENGE H	RACE 10 Laps
Awards:	Trophies to 1st, 2nd and 3rd.		
EVENT 4	FORWELL GROUP K SPOR	TS CHALLENGE F	RACE B & C 10Laps
Awards:	Trophies to 1st, 2nd and 3rd.		
EVENT 5	LEISURE WRITERS MONOP	POSTO CHAMPIO	NSHIP RACE 10 Laps
Awards:	1st £50, 2nd £40, 3rd £30, 4th	n £20, 5th £10.	
EVENT 6	CLUBMANS REGISTER SER	RIES RACE 10 La	aps
Awards:	Trophies awared to 1st in each	class.	
EVENT 7	GB ROADGOING SPORTS	CAR SERIES RAC	E 10 Laps
Awards:	Trophies to 1st, 2nd and 3rd.		
EVENT 8	FORWELL GROUP K SPOR	TS CHALLENGE F	RACE CLASSES A/D/E/F 10 Laps
Awards:	Trophies to 1st, 2nd and 3rd.		
	09.40-10.00 10.10-10.30 10.40-11.00 EVENT 1 Awards EVENT 2 Awards: EVENT 3 Awards: EVENT 4 Awards: EVENT 5 Awards: EVENT 6 Awards: EVENT 6 Awards: EVENT 7 Awards: EVENT 7	09.40-10.00 10.10-10.30 10.40-11.00Monoposto Kent Formula 1300 Group K (B/C)13.00-14.00PSL DELLORTO 750 CHALL AwardsEVENT 1PSL DELLORTO 750 CHALL AwardsAwardsTrophies to 1st, 2nd and 3rd.EVENT 2DELTA FREIGHT MONPOS' Awards:Awards:1st £40, 2nd £30, 3rd £20, 4th EVENT 3Awards:Trophies to 1st, 2nd and 3rd.EVENT 3TRY HOMES FORMULA 13 Awards:Awards:Trophies to 1st, 2nd and 3rd.EVENT 4FORWELL GROUP K SPOR Awards:Awards:1st £50, 2nd £40, 3rd £30, 4th EVENT 6Awards:1st £50, 2nd £40, 3rd £30, 4th EVENT 6Awards:Trophies awared to 1st in each B ROADGOING SPORTS 0 Awards:Awards:Trophies to 1st, 2nd and 3rd.EVENT 7GB ROADGOING SPORTS 0 Awards:Awards:Trophies to 1st, 2nd and 3rd.EVENT 8FORWELL GROUP K SPOR FORMELL GROUP K SPOR	09.40-10.00 10.10-10.30 10.40-11.00Monoposto Kent Formula 1300 Group K (B/C)11.40-12.00 12.10-12.30 12.40-13.0013.00-14.00 EVENT 1PSL DELLORTO 750 CHALLENGE RACE 10 AwardsTrophies to 1st, 2nd and 3rd.EVENT 2DELTA FREIGHT MONPOSTO KENT CHAMP Awards:1st £40, 2nd £30, 3rd £20, 4th £10.EVENT 3TRY HOMES FORMULA 1300 CHALLENGE I Awards:Awards:Trophies to 1st, 2nd and 3rd.EVENT 4FORWELL GROUP K SPORTS CHALLENGE F Awards:Awards:Trophies to 1st, 2nd and 3rd.EVENT 5LEISURE WRITERS MONOPOSTO CHAMPIO Awards:Awards:Trophies to 1st, 2nd and 3rd.EVENT 6CLUBMANS REGISTER SERIES RACE 10 La Awards:Awards:Trophies to 1st, 2nd and 3rd.EVENT 6CLUBMANS REGISTER SERIES RACE 10 La Awards:Awards:Trophies to 1st, 2nd and 3rd.EVENT 7GB ROADGOING SPORTS CAR SERIES RACEAwards:Trophies to 1st, 2nd and 3rd.

This meeting is organised by the British Automobile Racing Club and held under the General Regulations of the RAC Motor Sports Association Ltd. (Incorporating the provisions of the International Sporting Code of the FIA) and the Supplementary Regulations. RACMSA Permit No: 14083 (RESTRICTED).

Eligibility may be checked by a member or members of the Technical Commission listed:- G. BRACEGIRDLE, D.P. ELSMORE, R. FEWKES, R.T. FORD, M.E. GARTON, J.M. HARRIS, P. HARRIS, B.L. MORRIS, R.A. MCKINSTRY, A.J. PARSFIELD, P.C. RICHES, D. RUSSELL, P.J.R. SMYTHE (TRUCKS), S. VINCENT, G.M. WOOD. These Technical Commissioners will be considered to be 'JUDGES OF FACT' within the regulations laid down.

OFFICIALS OF THE MEETING

Stewards: J. Wood (RACMSA)

D. Ward

Judges: TBA

Clerk of Course: K. Smith

Deputy Clerk of Course: Mr D. Carter

Chief Incident: G. Cogman

MOTOR RACING IS DANGEROUS AND PERSONS ATTENDING THE MEETING DO SO AT THEIR OWN RISK

Front Cover: PSL/Dellorto 750 Formula Challenge Competitors in close combat. Photo:- Fred Scatley

Secretary of Meeting: Mrs H. Carter

BARC Staff: Mrs F. Carter Mrs P. Willis

Timekeepers: R. Ricketts (Chief) A Morgan Irving A. L. Cook

Brewster F B. Ricketts Stevens D. Williams Scrutineers: R. Baxter (Chief) D. Edwards J. Harris

R. Stevenson

Startline/Pits: B. Chapman (Chief)

M. Berry W. Fudge A. Hayes M. McLoughlin R. Wellington

Paddock/Assembly: A. Chapman

I. Ratcliffe R. Slegg

ANIMALS ARE NOT ADMITTED

Under no circumstances whatsoever will any animals be admitted to Pembrey whether in vehicles or not. The organiser's prime consideration must be the safety of competitors and anyone found attempting to bring an animal into the Circuit or with any animal at the Circuit will be asked to remove both animal and themselves from the Meeting.

Commentator: TBA

Medical Officers: Dr A. Howarth Dr A. Lindsay

First Aid: St John Ambulance

Breakdowns: T & L Autos

Rescue Units: Peugeot and Volvo

Marshals: Members of the BARC and other clubs

> **Origination by Graphics Plus,** 4/5 Milk Street, Bath. Telephone (0225) 442416. Printed and produced by Norton Press Printing, Avro Way, Bowerhill, Melksham, Wilts. Telephone Melksham 705529.

BARC (Pembrey) Limited

M. H. H. Groves (Chairman)

Board of Directors

D. I. Carter

S. Offord

W. Offredi

This meeting is promoted and organised by the BRITISH AUTOMOBILE **RACING CLUB on behalf of LLANELLI BOROUGH COUNCIL.**

Pembrey Circuit 0264 772607/772696/772697

2

RACING LINES

WELCOME ONCE again to **Pembrey** and if this is your first visit then an extra special welcome is due. We have a very full day's racing for you to watch and enjoy, proving that since our first programme of racing on 21st May we are going from strength. **Nigel Petch** was the first driver to win here but there are plenty of others out there today keen to take the chequered flag. Enjoy your racing.

PSL Dellorto 750 Formula Challenge Race

It's birthday time for the **750 Motor Club** which is celebrating 50 years of existence, while the 750 Formula has been around for 40 years.

It all began in 1949 with Austin 7s: could you imagine racing one of those? These days of course, mechanical motivation for the **PSL Dellorto 750 Challenge** cars comes from **850cc Reliant** engines.

Pembrey hosts the 10th round of the 16-round series which is currently led by **Ernie Frost**. As for picking a winner here today, well, it could be Frost, but expect the Canvey Island man to be challenged hard by **Bob Simpson** and **Mick Harris**.

Delta Freight Monoposto Kent Championship Race

The second race on the grid will be the **Delta Freight Monoposto Kent Championship.** This single-seater series is based on Formula Ford 1600. Every chassis must be either homemade or at least six years old, most competitors preferring ready-built, if somewhat elderly, equipment.

Modifications are permitted and until recently everyone was into wings, although that seems to be old hat now.

Ex-Formula 3 man Kevin Pope has won every race this season in a Reynard SF82. Likely challengers to the Chris Fox Motorsport – run car could come from Reynard SF83 mounted ex-Monoposto champion, Francis Philips and the Lola T642 of Mike Spence.

Try Homes Formula 1300 Challenge Race

The **Try Homes Formula 1300 Challenge** competitors make their first trip to the **Pembrey** circuit, although the series itself has been around

1988 Formula 1300 Champion Richard gilmour will be trying very hard to keep up front today.

for some time. In 1952 when it started the cars used 1172cc side-valve engines, but now they feature 1300cc push-rod Fords. Despite the march of technology the challenge's popularity remains undiminished, with some 49 competitors registered.

In general Mallocks are the most popular cars. Last year's champion, **Richard Gilmore** leads, but **Keith Messer** has already won three rounds and taken one second place. Should either of these two falter, expect **David Hancock** to take the trophy.

Forwell Group K Sports Challenge Race

This field certainly has the most classes in it. Class A is for up to 1300cc cars, class B for 1301cc to 1600cc while class C caters for anything beyond that. These cars are given a fairly free rein when it comes to tuning, unlike those found in classes D, E and F.

The engine capacity in the last three classes is identical to that of the first three, except that the general state of tune is much more restricted. Rose-jointing is not permitted and standard carburettors and manifolds must be retained.

Overall victory will surely go to a 5-litre Chevypowered Ultima, piloted either by **Bob Light**, **Ted Marlow** or **Nigel James**, the fastest man on road tyres in any class last year. An Impengined **Davrian** should be a safe bet for victory in the slower car race.

Jim Blockley leading the Monoposto Championship.

Leisure Writers Monoposto Championship Race

Photeo:- Fred Scatley

Race cars in the **Leisure Writers Monoposto Championship Race**, are mostly ex-Formula 3 cars, with the odd Formula Ford 2000. Although there is a choice of engines, most competitors prefer to remove the Formula 3 motors and bolt in the old favourite Ford 1600 unit.

Jim Blockley currently leads with a Formula 3 Ralt RT3 propelled by just such an engine, having won five out of the previous seven rounds. **David Dudley** won the other two rounds, in his Formula 3 Anson SA4 car and can be expected to challenge hard.

On the other hand, **David Cox** knows the circuit well, and his Ralt RT3 1600 can't be ruled out, while **Michael Stuart** always shows well against the quicker cars his FF2000 powered Delta.

Clubman's Register

Three main classes are currently run within this formula, although class A is soon to be phased out. These cars run with modified 1700cc Ford push-rod engines, giving around 190bhp on Dunlop control tyres.

Class B is set to become the premier formula in the form of the **Vauxhall Finance Sport Championship.** The 2-litre four-valves percylinder engine is used, in theory giving each car an identical 165bhp.

Class C caters for Formula Ford 1600cc engined cars, producing around 105bhp.

The class B boys raced at **Oulton Park** yesterday, and one of them could well be the overall winner, very possibly **Tony Pouyanne**. In class B it should be between **Gerard Macquillan** and **Nick Bridge**, while **John Knight** should take class C honours.

GB Road Going Sports Car Series Race

The seventh race of the day is the **GB Road Going Sports Car Series.** This championship caters for road legal sports cars, and while modifications are allowed, the bodywork must not be altered. The series boasts some 60 competitors and usually provides rather good racing. The combinations to watch are: **John Wrightson/Lotus 7, Tim Storrar/MG Midget, Bob Suart/Morgan Plus Eight** and **Peter Lee/Porsche**.

Angus Frazer

Photo:- John Gaisford

EVENT 1:10 LAPS

.....mph

GRID

EN' No.	TRIES Driver	Town	Entrant	Car/Engine
1 2 3 5 9 10 11 15 19 20 355 56 61 88 120	Mick Harris S M Jenkins Alan Avery Bob Simpson John Twidle Emie Frost Pete Knipe Rick Goodyer Chris Gough Peter Thomas Paul Coombes Mark Carter Andrew Baxter Michael Good Andy Howlett	Wooburn Green Harrogate Reading West Drayton Nuneaton Canvey Island Bracknell Harlington Harlow Haylake Salisbury Reading Newton Burgoland Milton Keynes Peterborough	Driver Driver Driver Driver Driver Driver Driver Driver Driver Driver Driver Driver Driver Driver Driver Driver	Darvi 877/Reliant Hague 78 Avalan Reliant SS Reliant 750/Reliant Centaur 19B/Reliant Darvi IF88/Reliant DNC F750/Reliant 750 Hague 80/Reliant Jomo Mk4D/Reliant Harrison Mk4/Reliant Davrian MkV/Reliant Centaur 11X/Reliant Nemesis II/Reliant ADS Reliant Harrison Mk4/Reliant

LAP CHART

POS	1	2	3	4	5	6	7	8	9	10
1						10				
2		s rip	57 ST		10-11	non	13	1 11.5	3.8	
3	135	1202	UON	199	110	100	100		Day	
4	espe	100	0.01		M	100	48	dun Jian	197	
5	awon	1 10	3.10	Date	-		100.1	de n		
6	200	2.20	w/la	Prest.	121	edi		inter	3:0	-
7	~	900			-				D.S.	
8			19	eit	R	21	en	GR	0	
9	sdip	100	ding	10				2.45		
10		1	- and	bin	(Div		100	adī	100	

CHAMPIONSHIP INFORMATION

PSL DELLORTO 750 CHALLENGE RACE

The formula is for sports racing cars powered by 850cc engines. This is the 10th race of the challenge which is over 16 rounds. The best eight scores count. The next race will be at Cadwell Park on 13th August.

RESULTS

	1	Winner's Timem.m.m.
	2	3
	4	5
	6	Fastest Lap: Car No
		_ ins
		mpl
11	Lap Record:	
19	To be established	

POINTS

	Ernie Frost	64	
	Rick Goodyer	54	
	Bob Simpson	54	
1	Alan Avery	53	
-	Mick Harris	40	
5	Anthony Raine	26	
7	Chris Gough	25	
1	Steve jenkins	24	
3	Richard Stephens	20	

Programme and Copyright

The promoters reserve the right to amend or cancel the programme without notice or refund. All literary matter in this programme, including the list of competitors and their racing numbers, is copyright, and any person found making illegal use thereof will be prosecuted. Although every endeavour is made to avoid inaccuracies in the description of competing cars, the Club accepts no responsibility for any that may occur. It is a condition of admission to these premises that photography, cine-film, video film, sound or any other visual or any part or parts of them for any (non-private) use including making copies of the recording/reproduction causing or permitting it to be seen or heard in public, broadcasting, diffusing, selling, renting, exchanging, lending, using for gain or otherwise dealing with it in whole or in part is stricly prohibited. Furthermore, Pembrey and the British Automobile Racing Club reserve the right to confiscate and retain possession of any photographs or films made in breach of this condition and without their express consent in writing.

DELTA FREIGHT MONOPOSTO KENT CHAMPIONSHIP RACE EVENT 2:10 LAPS

GRID

ENTRIES

Тс
Kie
Sta
Ho
Re
Ea
St
Fo
He
Do
Do
Kie
Gl
As
Du
Th
Slo
Ed
Mi
Te
Tu
So
Ch

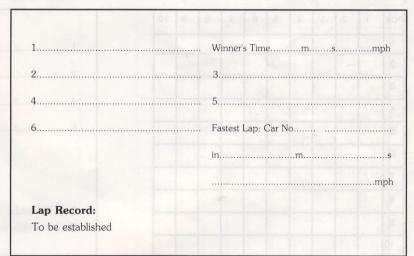
own dderminster afford oniton ading stbourne Helens our Oaks ereford orking oncaster idderminster loucester sh Vale Instable nornbury ough lgware ilton Keynes wkesbury vickenham

Solihull Cheltenham

Entrant Driver Fox Motorsport with Prompt Int, Couriers Driver Cotswold BMW (Cheltenham) Driver Driver Driver

Car/Engine Reynard SF83/Aldon Van Diemen RF82/Swadkin
Lola T642/Ford Reynard SF82/Swadkin Royale RP29/Fane Davron Mono/Ford Van Diemen RF82/Aldon Royale RP26/Grace Phoenix 001C/Falcon Hawke 22/Ford Royale RP24/Aldon Van Diemen RF81/Auriga Reynard SF77/79/Ford Van Diemen RF81/WRA Royale RP26/Auriga Van Diemen RF81/Titan Lola T644/Ford Royale RP29/Minister Van Diemen RF81/Kinnell

Lola T642E/Swadkin Reynard SF77/Minister Van Diemen RF84/Swindon


tevis	No.
Kenard Cilmour	1
Vilke Oxby	2
notit Allen	3
Williams	4
Anard Coleman	5
John Hamson Mire Fearberstone	6
John Moore	7
	8
	9
	10

LAP CHART

POS	1	2	3	4	5	6	7	8	9	10
1						ent :	han			
2					-					
3										
4			1							
5		-		1	178.	qu.	(apple			
6				Im						
7										
8										
9										1
10										1

RESULTS

AP CHART

CHAMPIONSHIP INFORMATION

DELTA FREIGHT MONOPOSTO KENT CHAMPIONSHIP

This formula is designed to provide single-seater racing at club level reasonably cheaply. Commercially-built chassis must be six years old and most are old Formula Ford chassis. Home-built chassis of any age are acceptable and experimenting using the very latest in racing car design technology is encouraged. Engines are virtually un-tuned 1600cc Ford 'Kent' units very like those used in Formula Ford. This produces close racing which is competitive but retains the clubby atmosphere which is so attractive to drivers running with limited budgets. All Monoposto Kent drivers are true amateur enthusiasts and the high standard of car preparation reflects this.

POINTS

Positions after last round:

1	Kevin Pope	125
2	Francis Phillips	86
3	Nick Spence	65
4	Robert Goodwin	46
5	Michael Robertson	42
6	Roger Algar	42
7	James Tomkins	41
8	Graham Densley	37
9	David Jackson	33
10	Chris Ward	33

TRY HOMES FORMULA 1300 CHALLENGE RACE

EVENT 3:10 LAPS

GRID

CNI	TD	IES
CIN	In	IE S

No.	Driver
1	Richard Gilmour
2	Keith Messer
4	Mike Oxby
15	Colin Turner
18	Brett Allen
27	Phil Williams
32	Tim Norris-Jones
33	Leonard Coleman
38	John Harrison
47	Dave Featherstone
66	John Moore
98	Trevor Gant

Town
Norwich
Basingstoke
Nottingham
Guildford
Sutton Coldfield
Brinkworth
London
Oxford
Maidstone
Leicester
Sandhurst
Luton

Entran
Driver

Car/Engine
Mallock U2/Ford
Lola T492M/Ford
Mallock Mk16BW/Ford
Mallock 18B/Ford
Marshal Carter 1A/Ford
Davis T7/Williams
Mallock 11/14/Ford
Mallock/Ford
Mallock Mk21/23/Ford
Feather 3/Ford
Ethyl Beagle/Treviscoe
GRM 2B/Ford

NES ·	ENTI
1	1
beit Crodute_	2
ch . Sper ice	3
Nin Pope	4
busW. 2nr	5
lisW-boo	6
ek <u>Seru</u> isan	7
di <u>Cata</u> prav <u>o</u>	8
nn Adam ab <u>aan Worrfallt</u>	9
bb Horley Ist an Ho pki ng -	10

LAP CHART

POS	1)	2	3	4	5	6	7	8	9	10
1	ndi.			ant.l				14		
2		-								
3										
4	N.N.	PI	N	214	ap.		O	1	3.77	iÓ
5	and the second			- in the	A.se	Legis.	, tents	3.		
6		1000 C		Pai.	10.5		LEN	ale I	(MC	
7	12.19	mult	n fi	a spa	115.3	architer La st	tare	pav	6160	by i
8	10 01	1.1	nees.	eoin	6			. 111	i he	at C
9		Server .			-					
10										

RESULTS

01	8-8-2-8-8-8-8-8-8
1	
2	
4	
6	Fastest Lap: Car No
	ins
	mph
Lap Record: To be established	
TO DE ESTADIISTIEU	

CHAMPIONSHIP INFORMATION

TRY HOMES FORMULA 1300 CHALLENGE RACE

This is the 10th round of the 13-race series for sports racing cars with Ford engines up to 1300cc. Next round, Cadwell Park, 13th August.

Points position after last round:

POINTS

1	Richard Gilmour	84
2	David hancock	82
3	John sutton	76
4	Keith Messer	75
5	Len Coleman	60
6	Mike Bland	53
7	Mike Oxby	50
8	Colin Turner	46
9	Paul Overton	43
10	Chris Kingwell	42

FORWELL GROUP K SPORTS CHALLENGE RACE

(Classes B & C)

EVENT 4:10 LAPS

GRID

EN	TRIES						
No.	Driver	Town	Entrant	Car/Engine	сс	2715	
Class	s B:						1
2	David Powell	Gwent	Driver	Westfield MkII/Vegatune	1600	244 3 1 · · · · · · · · · · · · · · · · · ·	G0X
3	Andy Reeves	Doncaster	Driver	Raffo TIPO 12/Alfa Romeo	1500	n Blockey	2
4	Chris Appleby	Weedon Lois	Driver	Noble 23/Ford	1600	name coodman	2
23	John Lacey	Loughborough	Driver	Sylva Leader/Toyota	1600	and the second second	3
31	Nigel Brown	Birmingham	Driver	Leader 400/Ford Crossflow	1600	Distant Title The Line Ca	U
60	Steve Newey	Birmingham	Driver	Westfield Eleven Laffey Ford	1600	usual Charles Velacion Dive	4
66	David Lloyd	Great Houghton	Driver	Westfield 7/Ford	1598		
74	Brian King	Reading	Driver	Sylva Striker/Lotus	1598	erand remained day	5
77	Simon Bucknell	Peterborough	Driver	Leader 400/Griffin	1585		U
85	Lee Noble	Leicester	Driver	Noble 23/Ford	1600	an Chowson	6
100	Bill Battey	Chorleywood	Driver	Sylva Leader/Twin Cam	1592	and provide the spectra and the	
103	Mark East	Andover	Driver	Swindon Sports Leader/Fiat	1585	nin Aprila	7
Class	s C:					alu bT buller Ta	8
1	Martin Harrison	Harlow	Driver	Dax Tojeiro/Jaguar	5800	General and a series	
8	Nigel James	Cobham	Driver	Ultima Shapecraft Spyder	5800	ICITER ROOSUSON	9
9	Bob Light	Hambledon	Driver	Ultima MkIII/Chevrolet	5800	Value - Value - Are	
12	Ted Marlow	Sharnford	Driver	Ultima MkII/Chevrolet	5000	1904	10
22	Reg Woodcock	Solihull	Driver	Westfield Eleven/Rover	3500		- 0
50	Bob Newey	Birmingham	Driver	Noble Laffey Ford	1640		
98	Paul Harris	Bristol	Driver	Sylva Striker MkI/Mazda	942		

LAP CHART

POS	1	2	3	4	5	6	7	8	9	10
1						1	1	1		
2										
3										
4					17			1	1	1
5	-	-		-		0.5.	10010		-	
6		1			The second	- former			T	
7										
8					1					
9				1						
10										

RESULTS

01.18	
1	Winner's Timemsmph
2	3
4	5
6	Fastest Lap: Car No
	ins
	mph
Lap Record:	
To be established	

POINTS

CHAMPIONSHIP INFORMATION

FORWELL GROUP K SPORTS CHALLENGE RACE

Positions after last round: (C) (B) (C) (D) 1 Bob Light 46 The 16-round challenge is divided into six classes. Class A: up to 1300cc. Class B: 1301cc - 1600cc. Class C: 1601cc and over. David Powell 46 3 Ted Marlow 43 4 Keith Facer 38 Julie Thwaites Phil Cook (D) (D) 33 5 Class D: up to 1300cc restricted. 29 Class E: 1301cc - 1600cc restricted. 6 28 27 (C) Class F: 1601cc and over restricted. Nigel James Class A - C are free while classes D - F run standard carburettors, manifolds and 8 Lyndon Griffin (B) 25 9 Ian McBay (A) suspension. 10 John Wasilewski (F) 23 Pembrey is the 11th race of the series. The next round is at Cadwell park on 13th August.

ELY (0353) 723359

ENTRIES

LIN	INILS	
No.	Driver	Town
2	Jim Blockley	Gloucester
4	Jeremy Goodman	Bournville
5	Michael Stuart	Bristol
7	David Dudley	Tewkesbury
9	Philip Anstruther	Bristol
11	David Cox	Stroud
12	John Crowson	Leeds
13	John Millichap	Tewkesbury
18	Brian Ayres	Curry Rivel
19	Kevin Pope	Reading
35	Les Trafford	Tewkesbury
36	Alistair Hopkins	Slough
44	Michael Robertson	Twickenham
48	Steve Pashley	Cheltenham
51	G Foot	Potters Bar

6	510	RAC	A.	
ONO I				
2				
		-		

LEISURE WRITERS MONOPOSTO CHAMPIONSHIP RACE

EVENT 5:10 LAPS

GRID

	line in the second s	and the second se
Entrant	Car/Engine	
Driver	Ralt RT3/84/Ford	1
Goodman (Building Materials) Ltd	Ralt RT3/Beattie	2
Driver	Delta T79/Ford Hooper	St. Nikel Bound
Sherwood Financial	Anson SA4/Ford	3
Systems Ltd	Fight Houston Duty To Mar	
Driver	WRA 82M/Hooper Ford	4
Driver	Ralt RT3/Stantune	77 Simon Burkmell
Driver	Argo JM10/Ford	5
Driver	Reynard SF79/80/Minister	
Driver	Ralt RT30/Ford	6
Driver	Reynard SF82/Swadkin	
Driver	Ralt RT3/Volkswagen Judd	7
Driver	Van Diemen RF81/Titan	
Driver	Lola T642E/Swadkin	8
Driver	Reynard SF84/Ford	
Driver	Modus MI/Cosworth	9
	Solhull Driver	22 Reg Woodbock
	Birningham Driver	10

LAP CHART

POS	1	2	3	4	5	6	7	8	9	10
1					1		1	1		
2										
3										
4										
5			-	1 N	in and	Nequil	Roja	1		
6						1		in i		
7										
8										
9										
10										1

RESULTS

CHARO HAR

1	
2	
4	
6	Fastest Lap: Car No
	ins
	mpł
Lap Record:	
To be established	

CHAMPIONSHIP INFORMATION

LEISURE WRITERS MONOPOSTO CHAMPIONSHIP

This is a formula designed to provide single-seater racing at club level for the real enthusiast. Commercially-built chassis must be at least four years old allowing many cars recently run in Formula 3 or national FF2000 to have a new lease of life. Home-built chassis of any age are acceptable and the freedom to experiment using the very latest in racing car design technology is encouraged. There are several engine types allowed, the most popular still being the 1600cc push-rod racing engine— there is no limit to tuning except supercharging. Other engines allowed are full race engines of up to 2-litres, which are fitted with a breathing restrictor as in F3, also the less powerful but less expensive 2000 engine similar to the FF2000 but with uprated camshaft and twin carburettors.

POINTS

Positions after last round:

1	Jim Blockley	116
2	David Dudley	80
3	David Cox	80
4	Michael Stuart	46
5	Jeremy Goodman	42
6	Phil Ansruther	41
7	Les Trafford	31
8	John Crowson	26
9	John Millichap	26
10	Chris Perkins	25

CLUBMANS REGISTER SERIES RACE

ENTRIES

EVENT 6:10 LAPS

No.	Driver	Town	Entrant	Car/Engine	сс	GRID		
Class	s A;			Driver			1.1	
6	Tony Pouyanne	Hemel Hempstead	Driver	Silver Phantom/Beattie	1700	suid		
14	Mike Fish	Faringdon	Driver	Vision V86/Beattie	1700			1
Class	s B:							2
52	Colin Davids	London	Driver	Vision V89/Vauxhall	2000			2
59	Ed Mercer	Windsor	Driver	Vision V88/Vauxhall	2000			3
Class	s C:							4
77	John Knight	Coolham	Driver	Mallock Mk21/Nelson	1600			4
102	Simon White	Warwick	Driver	Mallock 20/21B/Minister	1600			5
								6
								6
								7
		Swallham					HAN	8
							<u>6.</u>	9
								10

LAP CHART

POS	1	2	3	4	5	6	7	8	9	10
1										
2										
3										
4										
5				13	2	-			rtanı	i Gi
6					2				8	
7					1			-	n da rseni	on b
8									vbo	M N
9								druc	durite tobre	and J
10										

RESULTS

10 66 691	
1	Winner's Timem.m.
2	3
4	5.9A0 809098 040000A00.00
6	Fastest Lap: Car No
	ins
	mph
Lap Record:	
To be established	

CHAMPIONSHIP INFORMATION

CLUBMANS REGISTER

The series is over six rounds and is designed to provide members with further opportunities to race their cars. It is divided into three classes:

Class A is for Clubmans Sports cars with engines up to 1600cc fully modified or 1700cc restricted.

Class B is for Clubmans Sports cars with Vauxhall 2000cc sealed engines conforming to current Vauxhall Lotus Challenge regula-tions except that clutch-driven plate, fuel pump and oil are free. Silencing must comply with QA 17.1 otherwise exhaust systems are free.

Class C is for Clubmans Sports cars with engines complying with current Formula Ford 1600 rules, but fuel pumps are free.

POINTS

Gerard Macquillar

Mike McDermott

Colin Davids Charles Scammel Terry Nightingale

Ed Mercer

Chris Hart

Positions after last round: Class A: **Class C:** John Knight Glenn Eagling Harry Whitehouse Tony Pouyanne 58 John Istead 53 3 Phil Wilkinson 24 4 Tim Moors Martin Mansell 5 Class B: Nick Bridge

	12	4	Rod Hunter	22
	12	5	Keith Whyman	15
		6	Steve Morris	12
	66	7	Dave Roberts	10
n	58	8	Alan Wardle	10
	16	.9	Tony Sermon	10
1	16	10	Amanda Runnacles	2
	12	11	Mike McDermott	1
	8			
	6			
	3			

63

44 43

2

1 2

3

4

5

6 7

8

GB ROADGOING SPORTS CAR SERIES RACE

EN	TRIES				EVENT	7:10 LAPS
No. 20 21 22	Driver Peter Evans Jon Wrightson Bob Stuart	Town Cowbridge Devon Swanage	Entrant Driver Driver Driver	Car/Engine MGB Roadster Lotus 7/Twin Cam Morgan Plus 8/Rover	GRID	
				Ran BT3/84/Tord	_	2
					London	3
				Anson BAR and		4

RESULTS

LAP CHART

POS	1	2	3	4	5	6	7	8	9	10
1	10		-					-		
2										
3										
4										
5								1		
6							~			
7										
8		14	J.C.							
9	E.L.						1			TO
10							-			

1	Winner's Timem.msmph
2	3
4	5
6	Fastest Lap: Car No
	ins
	mph
Lap Record:	TRAPO TA
To be established	

CHAMPIONSHIP INFORMATION

GB ROADGOING SPORTS CAR SERIES RACE

The series encompasses roadgoing sports cars ranging from Midgets up to Porches and Morgans and including Caterham and Lotus Sevens. It is divided into three classes. Class A: up to 1.300cc

Class A: up to 1300cc. Class B: 1301cc - 2500cc.

Class C: 2501cc and over.

There are 14 rounds in the championship of which this is the ninth. Next race, Cadwell Park, 13th August.

POINTS

1	Jon Wrightson	30	
2	Peter Garland	26	
3	Bob Stuart	23	
4	Peter Lee	22	
5	Tim Storrar	17	
6	Simon Kinsey	15	
7	Fergus Oakley	14	
	Mark Moody	14	
8	Richard smith	13	
	Andy Windebank	13	
	· may ·····acount	10	

Flag Signals

Blue/Steady: Another competitor is close Waved: Another competitor is trying to pass.

White: Service vehicle or very slow car on circuit.

Yellow/Steady: Danger ahead, no overtaking, slow down.

Yellow/Waved: Great danger ahead, no overtaking, slow down, be prepared to stop. Yellow with Red Stripes: Slippery surface ahead.

Green: Proceed, hazard indicated has been cleared.

Red: Stop racing, proceed slowly to pits or startline as instructed by marshals.

Black (at individual marshal's posts): Race stopped.

Black/Orange Disc displayed with White number: Warning of mechnical failure which might not be obvious to driver, call into pits immediately. Black/White rectangular with White number: Warning to driver that his behaviour (i.e. corner cutting) is suspect and he may be black flagged. Black display with White number: Driver must call in immediately and report to the Clerk of the Course. Black/White Chequered: End of race.

Races are started using a system of red/green traffic lights.

FORWELL GROUP K SPORTS CHALLENGE RACE

(Classes A/D/E/F)

ENTRIES

EVENT 8:10 LAPS

GRID

: at Longhurst ulie Thwaites on Moore revor Simmonds lick Gallery in McBay ohn Evans	London London Oxshott Birmingham Wigan Honiton Brewood	Driver Driver Driver Driver Driver Driver Driver	Davrian Mk5/Bevan Imp Davrian Mk8/Bevan Imp Westfield XI/Midget Westfield II/Ford Davrian MkVI/Hartwell Davrian Mk7/Imp	998 998 1298 1300 998 998		1 2 3
ulie Thwaites on Moore revor Simmonds lick Gallery in McBay	London Oxshott Birmingham Wigan Honiton	Driver Driver Driver Driver Driver	Davrian Mk8/Bevan Imp Westfield XI/Midget Westfield II/Ford Davrian MkVI/Hartwell Davrian Mk7/Imp	998 1298 1300 998		
on Moore revor Simmonds lick Gallery in McBay	Oxshott Birmingham Wigan Honiton	Driver Driver Driver Driver	Westfield XI/Midget Westfield II/Ford Davrian MkVI/Hartwell Davrian Mk7/Imp	1298 1300 998		
revor Simmonds lick Gallery in McBay	Birmingham Wigan Honiton	Driver Driver Driver	Westfield II/Ford Davrian MkVI/Hartwell Davrian Mk7/Imp	1300 998		
lick Gallery in McBay	Wigan Honiton	Driver Driver	Davrian MkVI/Hartwell Davrian Mk7/Imp	998	Car Marris	3
in McBay	Honiton	Driver	Davrian Mk7/Imp		Cat Months	3
-				998		
ohn Evans	Brewood	Driver				
		Driver	Westfield II/BMC	1298	100	4
				Point Pressent and an		5
eith Facer	Redditch	Driver	Dutton Phaeton S2/MG	1300		(
				entouil sildomen A	datined son ad a	6
	Povnton	Driver	Leader SS/Ford	1600	a sourcework a p	7
live Turner	Sandiacre	Driver	Autotune Gemini	3000		T CARE COUNT
eter Powell	Swaffham	Driver	Sylva Striker/Ford	1300	la verningen bereit	8
				ses circuit molp.		9
				I dea a closer look a		
avid Clarke	Solihull	Driver	Westfield 7SE/Concar	1700	to the Faddad	10
e r li	ith Facer yan Healey ve Turner ter Powell	ith Facer Redditch yan Healey Poynton ve Turner Sandiacre ter Powell Swaffham	ith Facer Redditch Driver yan Healey Poynton Driver ve Turner Sandiacre Driver ter Powell Swaffham Driver	ith Facer Redditch Driver Dutton Phaeton S2/MG yan Healey Poynton Driver Leader SS/Ford ve Turner Sandiacre Driver Autotune Gemini ter Powell Swaffham Driver Sylva Striker/Ford	AttemptionRedditchDriverDutton Phaeton S2/MG1300yan Healey ve Turner ter PowellPoyntonDriverLeader SS/Ford1600Sandiacre ter PowellDriverAutotune Gemini Sylva Striker/Ford3000	hith Facer Redditch Driver Dutton Phaeton S2/MG 1300

LAP CHART

POS	1	2	3	4	5	6	7	8	9	10
1			-45			1.216		3,2		
2							-			-
3						101				3
4		1.58								
5			4							
6										- 11
7				1956						
8		118						1911		
9		0.2								2
10										-

RESULTS

	I THE OWNER IN THE REAL PROPERTY OF
1	Winner's Timem.
2	3
4	5
6	Fastest Lap: Car No
	inm
	m
Lap Record:	
To be established	

CHAMPIONSHIP INFORMATION

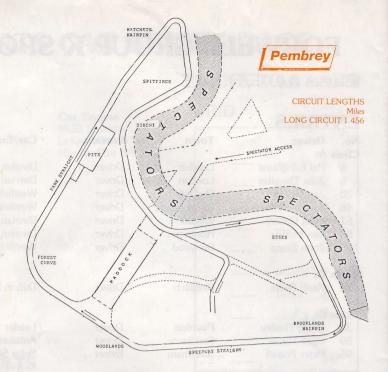
POINTS

FORWELL GROUP K SPORTS CHALLENGE RACE	Positions after last round:							
The 16-round challenge is divided into six classes.	1	Bob Light		(C)	46			
Class A: up to 1300cc.		David Powell		(B)	46			
Class B: 1301cc – 1600cc.	3	Ted Marlow		(C)	43			
Class C: 1601cc and over.	4	Keith Facer		(D)	38			
Class D: up to 1300cc restricted.	5	Julie Thwaites		(A)	33			
Class E: 1301cc – 1600cc restricted.	6	Phil Cook		(D)	29			
Class F: 1601cc and over restricted.	7	Nigel James		(C)	28			
Class $A - C$ are free while classes $D - F$ run standard carburettors, manifolds and	8	Lyndon Griffin		(B)	27			
suspension.	9	Ian McBay		(A)	25			
Pembrey is the 11th race of the series. The next round is at Cadwell park on 13th	10	John Wasilewski		(F)	23			
August.								

PEMBREY CIRCUIT INFORMATION

August 20 September 26 October 1 Car Meeting (British Racing & Sports Car Club) General Autoglass Tour 1989 (British Racing & Sports Car Club) British Automobile Racing Club Championship Raceday

PEMBREY CIRCUIT celebrated its first ever car meeting on May 21st, 1989. Organised by the British Automobile Racing Club, the inaugural meeting featured a seven-race programme of single-seater and saloon championship races.


SPECTATING. Spectators may view from the exit of Hatchets Hairpin to the exit of Brooklands Hairpin - see circuit map.

PADDOCK. For those who would like a closer look at the competing cars and drivers, access to the Paddock is via the circuit crossing, as indicated on the circuit map.

MOBILE CATERING AND BARS. There are mobile catering points both in the Public and Paddock area.

TOILETS. There are ladies and gents toilets situated in the Paddock and in the Public Enclosures.

PEMBREY SPEED TABLE (1.456 Miles) SPEED (in mph) = -

CAMPING/CARAVANNING. Those who wish to stay overnight either under canvas or in a caravan should follow the camping signs. Fresh water will be available at the camp site.

CAR PARKING. Vehicles are taken into the car park on condition that neither the organisers - the British Automobile Racing Club - nor the Llanelli Borough Council shall be liable for loss or damage to the vehicle, or to any part or accessory thereof, or to anything left in or about or with any vehicle, in whatever way or by whatever means such loss or damage may be caused.

1-456 x 3600 x No. of laps

N MPH M S MPH M S <t< th=""><th>PEMBRET SPEEL</th><th>TABLE (1.450 M</th><th>mes) SPEED (m</th><th>mpn) =</th><th>Ti</th><th>me (ir</th><th>secs)</th><th></th><th></th><th>1</th><th>and presto</th><th></th><th></th><th>19.78</th></t<>	PEMBRET SPEEL	TABLE (1.450 M	mes) SPEED (m	mpn) =	Ti	me (ir	secs)			1	and presto			19.78
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M S MPH	M S MPH	M S MDH	MS	MDH	MS	MDH	м	c	MDH	MS	мрн	MS	MDH
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c} 0 \ 46.2 \ 113.45 \ 0 \ 50.2 \ 104.41 \ 0 \ 54.2 \ 96.70 \ 0 \ 58.2 \ 90.06 \ 1 \ 2.2 \ 84.27 \ 1 \ 6.2 \ 79.17 \ 1 \ 10.2 \ 74.66 \ 1 \ 14.2 \ 70.64 \\ 0 \ 46.3 \ 113.20 \ 0 \ 50.3 \ 104.20 \ 0 \ 54.3 \ 96.53 \ 0 \ 58.4 \ 89.75 \ 1 \ 2.4 \ 84.01 \ 1 \ 6.4 \ 78.93 \ 1 \ 10.3 \ 74.56 \ 1 \ 14.3 \ 70.54 \\ 0 \ 46.4 \ 112.96 \ 0 \ 50.4 \ 104.00 \ 0 \ 54.4 \ 96.35 \ 0 \ 58.4 \ 89.75 \ 1 \ 2.4 \ 84.01 \ 1 \ 6.4 \ 78.93 \ 1 \ 10.4 \ 74.45 \ 1 \ 14.4 \ 70.45 \\ 0 \ 46.5 \ 112.72 \ 0 \ 50.5 \ 103.79 \ 0 \ 54.5 \ 96.17 \ 0 \ 58.4 \ 89.75 \ 1 \ 2.4 \ 84.01 \ 1 \ 6.5 \ 78.82 \ 1 \ 10.5 \ 74.34 \ 1 \ 14.5 \ 70.35 \\ 0 \ 46.6 \ 112.48 \ 0 \ 50.6 \ 105.58 \ 0 \ 54.6 \ 96.00 \ 0 \ 58.6 \ 89.44 \ 1 \ 2.5 \ 83.86 \ 1 \ 6.5 \ 78.82 \ 1 \ 10.5 \ 74.34 \ 1 \ 14.5 \ 70.35 \\ 0 \ 46.6 \ 112.48 \ 0 \ 50.6 \ 105.58 \ 0 \ 54.6 \ 95.64 \ 0 \ 58.8 \ 89.44 \ 1 \ 2.6 \ 83.73 \ 1 \ 6.6 \ 78.58 \ 1 \ 10.7 \ 74.34 \ 1 \ 14.7 \ 70.16 \\ 0 \ 46.8 \ 112.00 \ 0 \ 50.8 \ 103.18 \ 0 \ 54.8 \ 95.64 \ 0 \ 58.8 \ 89.44 \ 1 \ 2.8 \ 83.64 \ 1 \ 6.8 \ 78.04 \ 1 \ 10.8 \ 74.03 \ 1 \ 14.8 \ 70.07 \\ 0 \ 46.9 \ 111.76 \ 0 \ 50.9 \ 100.102.77 \ 0 \ 55.4 \ 95.47 \ 0 \ 58.7 \ 89.9 \ 1 \ 2.7 \ 83.35 \ 1 \ 6.7 \ 78.58 \ 1 \ 10.7 \ 74.34 \ 1 \ 14.6 \ 70.69 \\ 0 \ 47.1 \ 111.52 \ 0 \ 51.1 \ 102.57 \ 0 \ 55.1 \ 95.12 \ 0 \ 59.1 \ 88.69 \ 1 \ 3.1 \ 83.06 \ 1 \ 7.1 \ 78.13 \ 1 \ 11.1 \ 73.22 \ 1 \ 15.0 \ 69.76 \\ 0 \ 47.1 \ 111.52 \ 0 \ 51.1 \ 102.57 \ 0 \ 55.1 \ 95.12 \ 0 \ 59.1 \ 88.69 \ 1 \ 3.1 \ 83.06 \ 1 \ 7.1 \ 78.11 \ 1 \ 11.1 \ 73.22 \ 1 \ 15.1 \ 69.76 \ 77.55 \ 1 \ 11.5 \ 69.76 \ 77.55 \ 1 \ 11.5 \ 69.76 \ 77.55 \ 1 \ 11.5 \ 77.55 \ 1 \ 15.5 \ 69.76 \ 1 \ 11.5 \ 69.76 \ 1 \ 11.5 \ 69.76 \ 1 \ 11.5 \ 69.76 \ 1 \ 11.5 \ 69.76 \ 1 \ 11.5 \ 69.76 \ 1 \ 11.5 \ 69.76 \ 1 \ 11.5 \ 69.76 \ 1 \ 11.5 \ 69.76 \ 1 \ 11.5 \ 69.76 \ 1 \ 11.5 \ 69.76 \ 1 \ 11.5 \ 69.76 \ 1 \ 11.5 \ 69.76 \ 1 \ 11.5 \ 69.76 \ 1 \ 11.5 \ 69.76 \ 1 \ 11.5 \ 69.76 \ 1 \ 11.5 \ 69.76 \ 1 \ 11.5 \ 69.76 \ 1 \ 11.5 \ 69.76 \ 1 \ 11.5 \ 77.6 \ 1 \ 11.6 \ 77.6 \ 1 \ 11.6 \ 77.6 \ 1 \ 11.6 \ 77.6 \ 1$								1				Contraction of the second		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								1						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								1					and the second second second	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	and a second							1						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								1					and the state of the	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								1			the second s			
0 46.8 112.00 0 50.8 103.18 0 54.8 95.64 0 58.8 89.14 1 2.8 83.46 1 6.8 78.46 1 10.8 74.03 1 14.8 70.07 0 46.9 111.76 0 50.9 102.97 0 54.9 95.47 0 58.9 88.99 1 2.9 83.33 1 6.9 78.34 1 10.9 73.92 1 14.9 69.98 0 47.0 111.52 0 51.0 102.77 0 55.0 95.30 0 59.0 88.84 1 3.0 83.19 1 7.0 78.23 1 11.0 73.82 1 15.0 69.88 0 47.1 111.28 0 51.1 102.57 0 55.1 95.12 0 59.1 88.69 1 3.1 83.06 1 7.1 78.11 1 11.1 73.72 1 15.1 69.79 0 47.2 111.05 0 51.2 102.37 0 55.2 94.95 0 59.2 88.54 1 3.2 82.93 1 7.2 78.00 1 11.2 73.61 1 15.2 69.70 0 47.3 110.81 0 51.3 102.17 0 55.3 94.78 0 59.3 88.39 1 3.3 82.80 1 7.3 77.88 1 11.3 73.51 1 15.3 69.60 0 47.4 110.58 0 51.4 101.97 0 55.4 94.61 0 59.4 88.24 1 3.4 82.67 1 7.4 77.76 1 11.4 73.41 1 15.4 69.51 0 47.6 110.11 0 51.6 101.58 0 55.6 94.27 0 59.6 87.94 1 3.6 82.41 1 7.6 77.53 1 11.6 73.20 1 15.5 69.42 0 47.6 110.11 0 51.6 101.58 0 55.6 94.27 0 59.6 87.94 1 3.6 82.41 1 7.6 77.53 1 11.6 73.20 1 15.6 69.33 0 47.7 109.88 0 51.7 101.38 0 55.7 94.10 0 59.7 87.79 1 3.7 82.28 1 7.7 77.42 1 11.7 73.10 1 15.7 69.42 0 47.6 110.11 0 51.6 101.58 0 55.6 93.30 59.8 87.65 1 3.8 82.15 1 7.8 77.30 1 11.8 73.00 1 15.8 69.15 0 47.9 109.42 0 51.9 100.99 0 55.9 93.76 0 59.9 87.50 1 3.9 82.02 1 7.9 77.19 1 11.9 72.90 1 15.9 69.05 0 48.0 109.20 0 52.0 100.80 0 56.0 93.60 1 0.0 87.35 1 4.0 81.90 1 8.0 77.08 1 12.0 72.80 1 16.0 68.96 0 48.1 108.97 0 52.1 100.60 0 56.1 93.43 1 0.1 87.21 1 4.1 81.77 1 8.1 76.65 1 12.1 72.69 1 16.1 68.87 0 48.2 108.74 0 52.2 10.041 0 56.2 93.26 1 0.2 87.06 1 4.2 81.64 1 8.2 76.85 1 12.2 72.59 1 16.2 68.78 0 48.3 108.52 0 52.3 100.22 0 56.3 93.10 1 0.3 86.92 1 4.3 81.51 1 8.3 76.74 1 12.3 72.49 1 16.3 68.69 0 48.4 108.29 0 52.4 100.03 0 56.4 92.93 1 0.4 86.78 1 4.4 81.39 1 8.4 76.63 1 12.4 72.39 1 16.4 68.60 0 48.5 108.07 0 52.5 99.84 0 56.5 92.77 1 0.5 86.63 1 4.5 81.26 1 8.5 76.51 1 12.5 72.99 1 16.5 68.51 0 48.6 107.85 0 52.6 99.65 0 56.6 92.60 1 0.6 86.42 1 4.3 81.51 1 8.3 76.74 1 12.3 72.49 1 16.3 68.69 0 48.8 107.40 0 52.8 99.27 0 56.8 92.28 1 0.8 86.21 1 4.8 80.88 1 8.8 76.18 1 12	0 46.7 112.23	0 50.7 103.38	0 54.7 95.82					1						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 46.8 112.00	0 50.8 103.18						1						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								1						
$ \begin{array}{c} 0 \ 47.1 \ 111.28 \ 0 \ 51.1 \ 102.57 \ 0 \ 55.1 \ 95.12 \ 0 \ 59.1 \ 88.69 \ 1 \ 3.1 \ 83.06 \ 1 \ 7.1 \ 78.11 \ 1 \ 11.1 \ 73.72 \ 1 \ 15.1 \ 69.79 \\ 0 \ 47.2 \ 111.05 \ 0 \ 51.2 \ 102.37 \ 0 \ 55.2 \ 94.95 \ 0 \ 59.2 \ 88.54 \ 1 \ 3.2 \ 82.93 \ 1 \ 7.2 \ 78.00 \ 1 \ 11.2 \ 73.61 \ 1 \ 15.2 \ 69.70 \\ 0 \ 47.3 \ 110.81 \ 0 \ 51.3 \ 102.17 \ 0 \ 55.3 \ 94.78 \ 0 \ 59.2 \ 88.59 \ 1 \ 3.3 \ 82.80 \ 1 \ 7.3 \ 77.88 \ 1 \ 11.3 \ 73.51 \ 1 \ 15.2 \ 69.70 \\ 0 \ 47.4 \ 110.58 \ 0 \ 51.4 \ 101.97 \ 0 \ 55.4 \ 94.61 \ 0 \ 59.4 \ 88.24 \ 1 \ 3.4 \ 82.67 \ 1 \ 7.4 \ 77.66 \ 1 \ 11.4 \ 73.41 \ 1 \ 15.4 \ 69.51 \\ 0 \ 47.5 \ 110.34 \ 0 \ 51.5 \ 101.77 \ 0 \ 55.5 \ 94.40 \ 0 \ 59.5 \ 88.09 \ 1 \ 3.5 \ 82.54 \ 1 \ 7.5 \ 77.65 \ 1 \ 11.5 \ 73.30 \ 1 \ 15.5 \ 69.42 \\ 0 \ 47.6 \ 110.11 \ 0 \ 51.6 \ 101.58 \ 0 \ 55.6 \ 94.27 \ 0 \ 59.6 \ 87.94 \ 1 \ 3.6 \ 82.41 \ 1 \ 7.6 \ 77.53 \ 1 \ 11.6 \ 73.20 \ 1 \ 15.6 \ 69.33 \\ 0 \ 47.7 \ 109.88 \ 0 \ 51.7 \ 101.38 \ 0 \ 55.6 \ 94.27 \ 0 \ 59.6 \ 87.94 \ 1 \ 3.6 \ 82.41 \ 1 \ 7.6 \ 77.53 \ 1 \ 11.6 \ 73.20 \ 1 \ 15.6 \ 69.33 \\ 0 \ 47.7 \ 109.88 \ 0 \ 51.7 \ 101.38 \ 0 \ 55.7 \ 94.10 \ 0 \ 59.7 \ 87.79 \ 1 \ 3.7 \ 82.28 \ 1 \ 7.7 \ 77.42 \ 1 \ 11.7 \ 73.10 \ 1 \ 15.6 \ 69.33 \\ 0 \ 47.7 \ 109.88 \ 0 \ 51.8 \ 101.18 \ 0 \ 55.8 \ 93.93 \ 0 \ 59.8 \ 87.65 \ 1 \ 3.8 \ 82.15 \ 1 \ 7.8 \ 77.30 \ 1 \ 11.8 \ 73.00 \ 1 \ 15.6 \ 69.33 \ 0 \ 47.7 \ 109.42 \ 0 \ 51.8 \ 101.8 \ 0 \ 55.9 \ 93.76 \ 0 \ 59.9 \ 87.50 \ 1 \ 3.9 \ 82.02 \ 1 \ 7.9 \ 77.19 \ 1 \ 11.8 \ 73.00 \ 1 \ 15.8 \ 69.15 \ 69.42 \ 69.42 \ 69.42 \ 1 \ 10.8 \ 87.9 \ 1 \ 11.8 \ 77.0 \ 1 \ 11.8 \ 77.0 \ 1 \ 11.8 \ 73.00 \ 1 \ 15.8 \ 69.15 \ 69.42 \ 69.42 \ 1 \ 11.6 \ 69.42 \ 1 \ 11.7 \ 77.42 \ 1 \ 11.7 \ 77.42 \ 1 \ 11.7 \ 77.42 \ 1 \ 11.7 \ 77.49 \ 1 \ 11.9 \ 77.9 \ 1 \ 11.9 \ 77.9 \ 1 \ 11.9 \ 77.9 \ 1 \ 11.9 \ 77.9 \ 1 \ 11.9 \ 77.9 \ 1 \ 11.9 \ 77.9 \ 1 \ 11.9 \ 77.9 \ 1 \ 11.9 \ 77.9 \ 1 \ 11.9 \ 77.9 \ 1 \ 11.9 \ 77.9 \ 1 \ 11.9 \ 77.9 \ 1 \ 11.9 \ 77.9 \ 1 \ 11.9 \ 11.9 \ 77.9 \ 1 \ 11.9 \ 77.9 \ 1 \ 11.9 \ 77.9 \ 1 \ 11.9 \ 11.9$	0 47.0 111.52	0 51.0 102.77	0 55.0 95.30	0 59.0				1					1 15.0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 47.1 111.28	0 51.1 102.57						1						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 47.2 111.05	0 51.2 102.37	0 55.2 94.95	0 59.2		1 3.		1	7.2				1 15.2	69.70
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 47.3 110.81	0 51.3 102.17	0 55.3 94.78	0 59.3	88.39	1 3.	3 82.80	1	7.3	77.88	1 11.3	73.51	1 15.3	69.60
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 47.4 110.58	0 51.4 101.97	0 55.4 94.61	0 59.4	88.24	1 3.	4 82.67	1	7.4	77.76	1 11.4	73.41	1 15.4	69.51
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 47.5 110.34	0 51.5 101.77	0 55.5 94.44	0 59.5	88.09	1 3.	5 82.54	1	7.5	77.65	1 11.5	73.30	1 15.5	69.42
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 47.6 110.11	0 51.6 101.58	0 55.6 94.27	0 59.6	87.94	1 3.	6 82.41	1	7.6	77.53	1 11.6	73.20	1 15.6	69.33
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 47.7 109.88	0 51.7 101.38	0 55.7 94.10	0 59.7	87.79	1 3.	7 82.28	1	7.7	77.42	1 11.7	73.10	1 15.7	69.24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 47.8 109.65	0 51.8 101.18	0 55.8 93.93	0 59.8	87.65	1 3.	8 82.15	1	7.8	77.30	1 11.8	73.00	1 15.8	69.15
0 48.1 108.97 0 52.1 100.60 0 56.1 93.43 1 0.1 87.21 1 4.1 81.77 1 8.1 76.96 1 12.1 72.69 1 16.1 68.87 0 48.2 108.74 0 52.2 100.41 0 56.2 93.26 1 0.2 87.06 1 4.2 81.64 1 8.2 76.85 1 12.2 72.59 1 16.2 68.78 0 48.3 108.52 0 52.3 100.22 0 56.3 93.10 1 0.3 86.92 1 4.3 81.51 1 8.3 76.74 1 12.3 72.49 1 16.3 68.69 0 48.4 108.29 0 52.4 100.03 0 56.4 92.93 1 0.4 86.78 1 4.4 81.39 1 8.4 76.63 1 12.4 72.39 1 16.4 68.60 0 48.5 108.07 0 52.5 99.84 0 56.5 92.77 1 0.5 86.63 1 4.5 81.26 1 8.5 76.51 1 12.5 72.29 1 16.5 68.51 0 48.6 107.85 0 52.6 99.65 0 56.6 92.60 1 0.6 86.49 1 4.6 81.13 1 8.6 76.40 1 12.6 72.19 1 16.5 68.51 0 48.7 107.63 0 52.7 99.46 0 56.7 92.44 1 0.7 86.35 1 4.7 81.01 1 8.7 76.29 1 12.7 72.09 1 16.7 68.33 0 48.8 107.40 0 52.8 99.27 0 56.8 92.28 1 0.8 86.21 1 4.8 80.88 1 8.8 76.18 1 12.8 72.00 1 16.8 68.25 0 48.9 107.19 0 52.9 99.08 0 56.9 92.11 1 0.9 86.06 1 4.9 80.76 1 8.9 76.07 1 12.9 71.90 1 16.4 68.15 0 49.0 106.97 0 53.0 98.89 0 57.0 91.95 1 1.0 85.92 1 5.0 80.64 1 9.0 75.96 1 13.0 71.80 1 17.0 68.07	0 47.9 109.42	0 51.9 100.99	0 55.9 93.76	0 59.9	87.50	1 3.	9 82.02	1	7.9	77.19	1 11.9	72.90	1 15.9	69.05
0 48.2 108.74 0 52.2 100.41 0 56.2 93.26 1 0.2 87.06 1 4.2 81.64 1 8.2 76.85 1 12.2 72.59 1 16.2 68.78 0 48.3 108.52 0 52.3 100.22 0 56.3 93.10 1 0.3 86.92 1 4.3 81.51 1 8.3 76.74 1 12.3 72.49 1 16.3 68.69 0 48.4 108.29 0 52.4 100.03 0 56.4 92.93 1 0.4 86.78 1 4.4 81.39 1 8.4 76.63 1 12.4 72.39 1 16.4 68.60 0 48.5 108.07 0 52.5 99.84 0 56.5 92.77 1 0.5 86.63 1 4.5 81.26 1 8.5 76.51 1 12.5 72.29 1 16.5 68.51 0 48.6 107.85 0 52.6 99.65 0 56.6 92.60 1 0.6 86.49 1 4.6 81.13 1 8.6 76.40 1 12.6 72.19 1 16.6 68.42 0 48.7 107.63 0 52.7 99.46 0 56.7 92.44 1 0.7 86.35 1 4.7 81.01 1 8.7 76.29 1 12.7 72.09 1 16.7 68.33 0 48.8 107.40 0 52.8 99.27 0 56.8 92.28 1 0.8 86.21 1 4.8 80.88 1 8.8 76.18 1 12.8 72.00 1 16.8 68.25 0 48.9 107.19 0 52.9 99.08 0 56.9 92.11 1 0.9 86.06 1 4.9 80.76 1 8.9 76.07 1 12.9 71.90 1 16.6 68.16 0 49.0 106.97 0 53.0 98.89 0 57.0 91.95 1 1.0 85.92 1 5.0 80.64 1 9.0 75.96 1 13.0 71.80 1 17.0 68.07								1			1 12.0	72.80	1 16.0	68.96
0 48.3 108.52 0 52.3 100.22 0 56.3 93.10 1 0.3 86.92 1 4.3 81.51 1 8.3 76.74 1 12.3 72.49 1 16.3 68.69 0 48.4 108.29 0 52.4 100.03 0 56.4 92.93 1 0.4 86.78 1 4.4 81.39 1 8.4 76.63 1 12.4 72.39 1 16.4 68.60 0 48.5 108.07 0 52.5 99.84 0 56.5 92.77 1 0.5 86.63 1 4.5 81.26 1 8.5 76.51 1 12.5 72.29 1 16.5 68.51 0 48.6 107.85 0 52.6 99.65 0 56.6 92.60 1 0.6 86.49 1 4.6 81.13 1 8.6 76.40 1 12.6 72.19 1 16.6 68.42 0 48.7 107.63 0 52.7 99.46 0 56.7 92.44 1 0.7 86.35 1 4.7 81.01 1 8.7 76.29 1 12.7 72.09 1 16.7 68.33 0 48.8 107.40 0 52.8 99.27 0 56.8 92.28 1 0.8 86.21 1 4.8 80.88 1 8.8 76.18 1 12.8 72.00 1 16.8 68.25 0 48.9 107.19 0 52.9 99.08 0 56.9 92.11 1 0.9 86.06 1 4.9 80.76 1 8.9 76.07 1 12.9 71.90 1 16.9 68.16 0 49.0 106.97 0 53.0 98.89 0 57.0 91.95 1 1.0 85.92 1 5.0 80.64 1 9.0 75.96 1 13.0 71.80 1 17.0 68.07								1					1 16.1	
0 48.4 108.29 0 52.4 100.03 0 56.4 92.93 1 0.4 86.78 1 4.4 81.39 1 8.4 76.63 1 12.4 72.39 1 16.4 68.60 0 48.5 108.07 0 52.5 99.84 0 56.5 92.77 1 0.5 86.63 1 4.5 81.26 1 8.5 76.51 1 12.5 72.29 1 16.5 68.51 0 48.6 107.85 0 52.6 99.65 0 56.6 92.60 1 0.6 86.49 1 4.6 81.13 1 8.6 76.40 1 12.6 72.19 1 16.6 68.42 0 48.7 107.63 0 52.7 99.46 0 56.7 92.44 1 0.7 86.35 1 4.7 81.01 1 8.7 76.29 1 12.7 72.09 1 16.7 68.33 0 48.8 107.40 0 52.8 99.27 0 56.8 92.28 1 0.8 86.21 1 4.8 80.88 1 8.8 76.18 1 12.8 72.00 1 16.8 68.25 0 48.9 107.19 0 52.9 99.08 0 56.9 92.11 1 0.9 86.06 1 4.9 80.76 1 8.9 76.07 1 12.9 71.90 1 16.9 68.16 0 49.0 106.97 0 53.0 98.89 0 57.0 91.95 1 1.0 85.92 1 5.0 80.64 1 9.0 75.96 1 13.0 71.80 1 17.0 68.07														
0 48.5 108.07 0 52.5 99.84 0 56.5 92.77 1 0.5 86.63 1 4.5 81.26 1 8.5 76.51 1 12.5 72.29 1 16.5 68.51 0 48.6 107.85 0 52.6 99.65 0 56.6 92.60 1 0.6 86.49 1 4.6 81.13 1 8.6 76.40 1 12.6 72.19 1 16.6 68.42 0 48.7 107.63 0 52.7 99.46 0 56.7 92.44 1 0.7 86.35 1 4.7 81.01 1 8.7 76.29 1 12.7 72.09 1 16.7 68.33 0 48.8 107.40 0 52.8 99.27 0 56.8 92.28 1 0.8 86.21 1 4.8 80.88 1 8.8 76.18 1 12.8 72.00 1 16.8 68.25 0 48.9 107.19 0 52.9 99.08 0 56.9 92.11 1 0.9 86.06 1 4.9 80.76 1 8.9 76.07 1 12.9 71.90 1 16.9 68.16 0 49.0 106.97 0 53.0 98.89 0 57.0 91.95 1 1.0 85.92 1 5.0 80.64 1 9.0 75.96 1 13.0 71.80 1 17.0 68.07								Inter spice into						
0 48.6 107.85 0 52.6 99.65 0 56.6 92.60 1 0.6 86.49 1 4.6 81.13 1 8.6 76.40 1 12.6 72.19 1 16.6 68.42 0 48.7 107.63 0 52.7 99.46 0 56.7 92.44 1 0.7 86.35 1 4.7 81.01 1 8.7 76.29 1 12.7 72.09 1 16.7 68.33 0 48.8 107.40 0 52.8 99.27 0 56.8 92.28 1 0.8 86.21 1 4.8 80.88 1 8.8 76.18 1 12.8 72.00 1 16.8 68.25 0 48.9 107.19 0 52.9 99.08 0 56.9 92.11 1 0.9 86.06 1 4.9 80.76 1 8.9 76.07 1 12.9 71.90 1 16.9 68.16 0 49.0 106.97 0 53.0 98.89 0 57.0 91.95 1 1.0 85.92 1 5.0 80.64 1 9.0 75.96 1 13.0 71.80 1 17.0 68.07					and the second			•						
0 48.7 107.63 0 52.7 99.46 0 56.7 92.44 1 0.7 86.35 1 4.7 81.01 1 8.7 76.29 1 12.7 72.09 1 16.7 68.33 0 48.8 107.40 0 52.8 99.27 0 56.8 92.28 1 0.8 86.21 1 4.8 80.88 1 8.8 76.18 1 12.8 72.00 1 16.8 68.25 0 48.9 107.19 0 52.9 99.08 0 56.9 92.11 1 0.9 86.06 1 4.9 80.76 1 8.9 76.07 1 12.9 71.90 1 16.9 68.16 0 49.0 106.97 0 53.0 98.89 0 57.0 91.95 1 1.0 85.92 1 5.0 80.64 1 9.0 75.96 1 13.0 71.80 1 17.0 68.07			Construction of the local division of the lo					1						
0 48.8 107.40 0 52.8 99.27 0 56.8 92.28 1 0.8 86.21 1 4.8 80.88 1 8.8 76.18 1 12.8 72.00 1 16.8 68.25 0 48.9 107.19 0 52.9 99.08 0 56.9 92.11 1 0.9 86.06 1 4.9 80.76 1 8.9 76.07 1 12.9 71.90 1 16.9 68.16 0 49.0 106.97 0 53.0 98.89 0 57.0 91.95 1 1.0 85.92 1 5.0 80.64 1 9.0 75.96 1 13.0 71.80 1 17.0 68.07								1						
0 48.9 107.19 0 52.9 99.08 0 56.9 92.11 1 0.9 86.06 1 4.9 80.76 1 8.9 76.07 1 12.9 71.90 1 16.9 68.16 0 49.0 106.97 0 53.0 98.89 0 57.0 91.95 1 1.0 85.92 1 5.0 80.64 1 9.0 75.96 1 13.0 71.80 1 17.0 68.07	,							•						
0 49.0 106.97 0 53.0 98.89 0 57.0 91.95 1 1.0 85.92 1 5.0 80.64 1 9.0 75.96 1 13.0 71.80 1 17.0 68.07														
0 49.2 106.53 0 53.2 98.52 0 57.2 91.63 1 1.2 85.64 1 5.2 80.39 1 9.2 75.74 1 13.2 71.60 1 17.2 67.89								1.						
								1						
0 49.3 106.32 0 53.3 98.34 0 57.3 91.47 1 1.3 85.50 1 5.3 80.26 1 9.3 75.63 1 13.3 71.50 1 17.3 67.80 0 49.4 106.10 0 53.4 98.15 0 57.4 91.31 1 1.4 85.36 1 5.4 80.14 1 9.4 75.52 1 13.4 71.41 1 17.4 67.72								1						
0 49.5 105.89 0 53.5 97.97 0 57.5 91.15 1 1.5 85.22 1 5.5 80.02 1 9.5 75.41 1 13.5 71.31 1 17.5 67.63					Contraction of the second s			1						
0 49.6 105.67 0 53.6 97.79 0 57.6 91.00 1 1.6 85.09 1 5.6 79.90 1 9.6 75.31 1 13.6 71.21 1 17.6 67.54								1						
0 49.7 105.46 0 53.7 97.60 0 57.7 90.84 1 1.7 84.95 1 5.7 79.78 1 9.7 75.20 1 13.7 71.12 1 17.7 67.45								1						
0 49.8 105.25 0 53.8 97.42 0 57.8 90.68 1 1.8 84.81 1 5.8 79.65 1 9.8 75.09 1 13.8 71.02 1 17.8 67.37														
0 49.9 105.04 0 53.9 97.24 0 57.9 90.52 1 1.9 84.67 1 5.9 79.53 1 9.9 74.98 1 13.9 70.92 1 17.9 67.28														
					5									